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Abstract

A here-to-fore unavailable analytical solution to the boundary-value problem of free vibration response
of arbitrarily laminated moderately thick rectangular plates, subjected to an admissible boundary condition
is presented. A novel boundary continuous solution approach is employed to solve the highly coupled
governing partial differential equations that arise from the implementation of the Yang—Norris—Stavsky
(1966) theory incorporating first-order shear deformation, and rotary and in-plane inertias. The numerical
results presented for various parametric effects to study first lowest seven eigenvalues, and corresponding
eigenvectors, can be capitalized as bench-marks for a future comparison. An eight-node isoparametrics
shear-flexible element is considered to validate its performance with respect to the present solutions. © 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

A tremendous growth of advanced fiber reinforced laminated composites as primary structural
materials in aerospace, aircraft, automotive, marine, submarine, and other industrial applications,
has impelled a growing interest among the researchers in the quest to understand the structural
response of these laminates, in general, and particular in the field of dynamics. Even for a simplest
geometry and lamination, the analysis of these laminates is loaded with such complexities as
introduced by couplings among the stiffness terms in the governing partial differential equations
as well as in boundary conditions. This coupling phenomenon plays an important role in selecting
solution methodology. In approximate domain of analysis, use of the Galerkin, Rayleigh—Ritz,
Collocation, Finite Element, Finite Element Difference, etc., may not pose difficulties due to the
coupling terms as they do in the domain of an analytical approach. As a result analytical solution
approaches are more conspicuous in the current literature than by their absence. However, an
approximate solution users usually validate their methodology comparing some bench-mark prob-
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lems obtained using analytical approach. Therefore, the importance of an analytical based solution
remains in the field of an engineering requirement along with the difficulties in obtaining them.
The difficulty is experienced in all three plate theory: (i) Classical Lamination Theory (CLT)—
based on Kirchhoff’s hypothesis, (ii) First Order Shear Deformation Theory (FSDT)—based on
Reissner (1944) and Mindlin (1951) theory, and (iii) Higher Order Shear Deformation Theory
(HOSDT)—based on linear variation of shear deformation across the thickness. Bert and Mayb-
erry (1969) appear to be the first to be credited for the analysis of fully clamped rectangular
laminated plates with CLT formulation using the approach of the Ritz method. Craig and Dawe
(1986) have used the Ritz and finite strip methods to analyse vibration problems of symmetric
angle-ply rectangular plates. Following the approximate solution technique, Ashton (1970) has
reported the analysis of all edge clamped anisotropic plate, in which the deflection function is
assumed in the form of series involving beam characteristic shapes. Use of approximate solution
techniques are also found in the works of Chamis (1969), Leissa and Narita (1989), Liew and Lam
(1991), Chow et al. (1992), Hung et al. (1993a, b), Baharlou and Leissa (1993), Chai (1994), Liew
and Lim (1995), and Liew et al. (1996). Using boundary discontinuous double Fourier series
solution functions, Whitney (1969, 1979), and Whitney and Leissa (1970) have presented analytical
solution to rectangular plates with anti-symmetric cross-ply and angle-ply lamination for various
boundary conditions. Recently, Librescu et al. (1989) have given solution to free vibration problems
of thin plates for various boundary conditions. In their analysis they have considered anti-
symmetric cross-ply and angle-play lamination, only.

In the domain of FSDT, majority of the works are found with cross-ply and angle-ply lamination
(symmetric or anti-symmetric). Srinivas et al. (1970) are the first to obtain an exact Navier-type
solution to the problem of free vibration of homogeneous and cross-ply thick plates. Bert and
Chen (1978) have also demonstrated the Navier-type solution but for free vibration problems of
anti-symmetric angle-ply rectangular plates. Palardy and Palazotto (1990) using the Levy-type
approach, have presented a solution to rectangular plates with symmetric cross-ply lamination
form various boundary conditions, with two opposite-edges being invariably simply supported
(Navier-type). Librescu et al. (1989) have also used the Levy-type approach and given solution to
anti-symmetric cross-ply and angle-ply lamination to vibration response of rectangular plate
problems. Chaudhuri and Kabir (1994) has given analytical solution to free vibration response of
cross-ply laminated plates with simply supported and all-edge clamped boundary conditions.
Using a boundary continuous generalized Navier’s approach, Kabir and Chaudhuri (1994) have
presented an analytical solution to free vibration problems of arbitrarily laminated rectangular
plates with fully clamped boundary conditions at all edges. It is worth mentioning here that the
solution functions selected for this particular boundary condition, may not be suitable for other
cases. Interested readers may find an extensive literature survey in the recent works of Liew et al.
(1995) on mainly FSDT-based formulations. To the best of the knowledge of the author, no free
vibration response is studied analytically for a simply supported (appears to be a simple one)
plates with arbitrary lamination having FSDT in consideration, an important mile-stone required
to be established towards the realm of analytical solution.

In regard to the HOSDT-based analytical field, most of the solutions are performed for cross-
ply and angle-ply lamination, as can be seen in the works of Reddy (1984) and Librescu and
Khdeir (1988). In this field also, to the best of the knowledge of the author, no analytical solutions
to free-vibration response for arbitrary lamination is reported. However, in this paper the scope
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Fig. 1. A typical arbitrary laminated rectangular plate.

of the development will be limited to only FSDT-based formulation, as a first step towards the
goal. Therefore, the first objective is to develop an analytical solution to the free-vibration response
of a rectangular plate with arbitrary laminations using FSDT. The second objective is to compare
the present results with the results obtained from the finite element method.

1.1. Theoretical formulation

Figure 1 illustrates a geometry of a laminated rectangular plate with arbitrary laminations. &
indicates total thickness of the plate while 2 denotes thickness of kth layer. The reference surface
is placed at middle height of the thickness /. The reference coordinate axes (x, y, z) are placed at
the reference surface. The dimensions ¢ and b are along x- and y-axes, respectively. The fiber
orientation is measured from x-axis, using right-hand thumb rule. The deformation characteristic
behavior of a arbitrary laminated plate using FSDT is defined as

{N}_[[A] [B]}
M| sym [D]

{0} = [4]{K'} (1)

where

and
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N' = {Ny, Ny, Ny} @)
M"={M.M,M,} ©)
{e")7 = {ev, e, 60} 4)
(K0T = (k3 k) K ©)
{0}" =1{0..0,} (6)
(T = ks by} W)

{N} represent in-place force resultants, while { M} represent force couple resultants. {Q} represent
resultants of transverse shear stress. Defining u; (i = 1-5) as displacement of middle surface along
x-, y-, and z-axes and rotation of normals about y and x, respectively, {¢’}, {k"} and {k'} can be

expressed as

= ®)
3 =5 ©)
&, = a@y o (10)
.t = (11)
K — aa“ys (12)
k,Sy = 65; + 8;;5 (13)
k! = aa”; Fus (14)
k' = ‘Zj Fu, (15)

[A]. [B], [D] and

A are defined in Reddy and Miravete (1995).

Using the principle of virtual work, the governing equilibrium equations in terms of stress
resultant are defined as

Ox ay !
ON ON
R A (17)

Ox dy
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et (18)

oM, oM,

ax Ty (19)

et 20)
where [; (i = 1-5) are mass inertia terms defined as

I = pyuy +pouy, (21)

L =pus,+pousy, (22)

Iy =pus, (23)

I, = pouy +psyy, (24)

Is = potty s+ psus,, (29)
in which

N
(p1,p2,p3) = k; L(M pP(1,z,2%) dz (26)

p® unit mass of kth layer. The governing differential equation may be written in terms of
displacement functions and their derivatives:

Lu=f (27)
where

L;=L; ij=1,...5 (28)

u' = {u Uy, us, Uy, s} (29)

1 ={I,,L,15,1,, 15} (30)
For the sake of brevity L,; elements are given

Ly, =A4,,074+2A4,,0,0,+ Ags0; (31)

L, =A4,607+(A1,+A4,6)0.0,+ Ay40; (32)

L;=0 (33)

The following non-Navier- and non-Levy-type boundary conditions are considered:
atx=0,a Uy =uy; =u, =0 M,=0 (34)
aty=0,b U, =us =uy, =0 M,=0 (35)

at all edges N, =0 (36)
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The above boundary conditions are referred to as SS2-type boundary conditions (Hoff and
Rehfield, 1965; Kabir, 1996). The goal here is to solve eqn (27) in conjunction with the edge
conditions as stipulated in eqns (34)—(36).

1.2. Analytical solution to governing equations

The assumed solution functions for the stated problem are selected in terms of double Fourier
series in the following form:

u, = mil nool AL sin(a,,x) cos(f,y) e 0<x<ua 0<y<b (37)

U, = i i A2) cos(a,,x) sin(f,y) e 0<x<ua 0<y<b (38)
m=0n=1

Uy = mil ”i A sin(a,,x) sin(B,,) e” 0<x<a 0<y<b (39)

Uy = mio Wi A3 cos(a,,x) sin(p,y) e 0<x<a 0<y<b (40)

Us = mil nio AL sin(a,,x) cos(f,y) e 0<x<b 0<y<b (41)

where AY) are Fourier constants. «,, and f, are defined as mmn/a and nn/b, respectively. The assumed
displacement functions completely satisfy the geometric boundary conditions, a priori, before their
substitution into the governing partial differential equations. It may be noticed that natural
boundary conditions pose some difficulties in satisfying some ordinary discontinuities existing in
some derivatives. In order to clarify more on the above phenomenon, function u, is considered.
The first derivative of u, with respect to y can easily be obtained, however, the second derivative
may not be:

up = Y Y A% sin(o,x)cos(By) e 0<x<a 0<y<bh 42)
m=1n=1
w, =y Y B.AYsin(x,x)sin(f,y)e”  0<x<a 0<y<b (43)

m=1n=1

Therefore, u;, is having some discontinuities at y =(0,5). So its further differentiation is not
possible before its substitution into the partial differential equations. At this stage u, ,, is obtained
in the following manner as suggested by Hobson (1926), Whitney and Leissa (1970), Whitney
(1970), Chaudhuri (1989), Kabir (1996), etc.

1 0 - 0 [°s) _
: 2 1 1 2 i
Uiy =5 Y apsin(a,x) e+ Y Y [—pPAL +oldl +oPd]e0 < x <a0 <y <b
m=1

m=1n=1

(44)
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where ' are constants arising due to the discontinuities of the derivatives of the functions. These
constants are related to the functions at edges in the following form:

{al } — 4J [ O 8}1 {ul x, b)} sin(a,,x) dx (45)
a? ab 0 - ay av U (.X, b)

The above procedure is applied to the situation, whenever discontinuities in derivatives arise. This
then paves the way for substitution of derivatives of the functions into the governing equations.
However, another difficulty arises at governing equations level, after substituting all the necessary
derivatives of the functions. This happens due to the occurrence of, as for example in the first
equation of eqn (28), terms sin(a,,x) - cos(f,»), cos(,,x) * sin(f,»), etc. This apparently provides a
notion that one will get more equations than unknowns. This situation is managed by expanding

[in case of the first equation of eqn (28)] cos(a,,x) * sin(f,y) in the following form as suggested by
Green (1944), Green and Hearmon (1945) and Kabir and Chaudhuri (1994).

cos(a,,x), sin(f,x) = 2 VN SIN(20,X) COS(S0Y) 0<x<a 0<y<b (46)
r=1s=1
where
nr s
/ - / - 4
o p and f; b 47)
4
T’ m—+r = odd
Uy = n(pz _mz) m#r (48)
m-+r = even
0
4.
—— | n+s=o0dd
New = {m(s* —n?) n#s (49)
0 n—+s = even

The above manipulation in governing equations and natural boundary conditions whenever
necessary, yields finally as many equations as the unknowns. Finally, the set of equations are
casted in the form suitable for eigenvalue problems. A FORTRAN Program AFSANA-VIB (A
Fourier Series ANAlysis—VIBration) is developed to code the theory. The code is linked with
ISML-subroutine for solving eigenvalue problems.

2. Numerical results and discussion

In what follows, the numerical results pertaining to the first seven lowest natural frequencies
and corresponding eigenvectors for a 0°/45° lamination sequence of a rectangular plate, are
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presented. The angle of a lamina is about z-axis measured from x-axis, and is shown in Fig. 2. The
following material properties for a graphite/epoxy orthotropic lamina is considered:

E, =76GPa

E, =55GPa
E,=FE;=12GPa
E,; =1.5GPa

Vi, =v3 = 0.28

v,3 = 0.34

where E, and E, are major and minor moduli of elasticity, respectively. G, represents in-plane
shear modulus, while G5 and G,; denote transverse shear moduli. v;; are Poisson’s ratios. A shear
correction factor, K7 = K, = 5/6, is used (Bert and Chen, 1978). The normalized natural fre-
quencies are defined as

S = La*(p/Ey)'?|h
i=1-7
where
Iy <ly <t < g

The accuracy of any series solution is usually ascertained by studying the convergence of unknown
parameters. To such a quest of study, Figs 3—6 plot numerically lowest seven natural frequencies
for various span-to-depth, side-to-width ratios. Figure 3 presents plots for b/a = 1, and a/h = 10.
First five lowest frequencies converge for as low as m = n = 3, showing excellent convergence with
almost no variations. However, 4, shows smooth convergence for m = n > 5, almost similar nature
as found in 4, as well.
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Similar plots are presented in Fig. 4 for b/a = 1, and a/h = 20, showing the convergence nature
the same as of a/h = 10. However, the same is not achieved for the case of b/a = 2, and a/h = 10,
with exceptions of 4, 4,, 4; and Zs. A4, /¢ and 7, converge with m = n > 7. The same nature as of
Fig. 5is found for the case of b/2 = 2, and a/h = 20 (Fig. 6). Variations of /, (i = 1-7) with respect
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Fig. 5. Convergence of normalized eigenvalues, 4; (i = 1-7), for a plate with b/a = 2 and a/h = 10.

b/a=2, a/h=20

m=n

Fig. 6. Convergence of normalized eigenvalues, 4; (i = 1-7), for a plate with b/a = 2 and a/h = 20.

to a/h are shown for (a/b) = 1 and (b/a) = 2, respectively, in Figs 7 and 8. The thickness effects
are more prominent for higher natural frequencies for both (b/a) =1 and 2. Eigenvectors are
plotted in Figs 9-15 in which u;(Z,j) indicate (i,j) component of eigenvectors related to u; dis-
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Table 1
A comparison of normalized /; (i = 1-7) with respect to the present and finite element methods

A alh =10 alh =20

Analytical FEM Analytical FEM
A 9.85 9.85 10.78 10.56
2 17.92 17.69 20.08 19.58
A3 24.54 23.29 30.76 27.19
Ay 27.49 27.86 32.52 32.61
As 33.34 32.30 41.40 38.96
Ae 37.80 38.37 46.92 47.89
A 40.39 40.93 57.46 53.02

bla =1.0; m = n = 7 (for analytical method)

M b/a=1, m=n=7

0 : " :
10 20 30 40 50

a/h
Fig. 7. Variations of normalized eigenvalues, 4; (i = 1-7), for a plate with bja =1 and m =n =17.

placement. Table 1 presents a comparison of the present results with finite element results. An
isoparametric eight-node finite element based on FSDT formulation is considered. The element
uses the reduced integration scheme. The formulation and the development of the element are not
presented here for the sake of brevity, and interested readers may find in Bathe (1982), Zienkiewicz
et al. (1971), and Hinton and Owen (1977) more details. The comparison is presented for a/h = 10
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Fig. 9. A mode shape u; 5, for a plate with b/a = 1 and a/h = 10.

and 20, with b/a = 1, and m = n = 7. The finite element results are more agreeable to the analytical
one for the case of a/h =10 than a/h = 20. The reason could be due to the use of reduced

integration scheme in the finite element development which has possibly made the element more
flexible than required.
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3. Conclusion

An analytical solution to the free vibration response of shear flexible rectangular plates with
arbitrary lamination is presented, based on boundary continuous double Fourier series solution
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Fig. 12. A mode shape us,,, for a plate with b/a = 1 and a/h = 10.
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Fig. 13. A mode shape u;, 5 for a plate with b/a = 1 and a/h = 10.

functions. A computer program AFSANA-VIB is developed to obtain numerical results. The
numerical results presented in the form of eigenvalue and eigenvectors can be used as threshold
references for future comparisons.
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